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Lyapunov's second method is used to establish the conditions for the solutions of the discrete-time Volterra equations to be 
stable and bounded. The conditions are formulated directly in terms of the characteristics of the equations. © 1999 Elsevier 
Science Ltd. All fights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M .  D E F I N I T I O N  OF STABILITY 

Consider the scalar equation describing the change in the state Xn of a system 

n 

Xn+ t =--Y.an. iXi ,  n>~O (1.1) 
i=O 

where n = 0, 1 , . . .  is discrete time, an, i is a given set of numbers defined for all n/> 0, 0 ~< i ~< n, and 
the initial state x0 of the system is known. 

Equations of type (1.1) are encountered in various applications, in numerical schemes for solving 
differential and integral equations and in convolution-type equations (i.e. when an, i = an_i) 

n n 

Xn+l = -- ~" an-iXi  = -- E aiXn-i  (1.2) 
i=0 i=0 

which are widely used in renewal theory [2]. 
In all these cases it is important to consider the asymptotic properties of the solutions, and in particular, 

the problem of their stability with respect to perturbations of the initial state x0. 

Defini t ion.  System (1.1) is said to be stable if, for any e > 0, 8(e) > 0 exists such that, if Ix01 < ~(e), 
then Ix,,I < e for all n I> 0. 

A stable system (1.1) is said to be asymptotically stable if limn__ ~ Xn = 0 for any x0 in the attraction 
domain of the trivial solution. 

The method of Laplace transforms has been used [2] to obtain conditions for the asymptotic stability 
of Eqs (1.2) under the additional assumption that all the coefficients a i are of fixed sign and that the 
series formed by the ai s is convergent. Modified theorems have been formulated for Lyapunov's second 
method in relation to the stability of solutions of Volterra equations, and they have been used to derive 
certain stability conditions for systems of type (1.1), on the assumption that the series of absolute values 
of the coefficients a,,j is convergent [3-6]. However, this assumption may sometimes turn out to be overly 
restrictive, since, for example, asymptotically stable systems of type (1.2) exist that do not satisfy it. 

Below we will establish certain stability conditions that hold without the aforementioned assump- 
tion. They are obtained by constructing suitable Lyapunov functionals (i.e. positive definite functionals 
whose first difference along trajectories of the system is negative definite), and they are formulated in 
terms of sign-definite or monotone sequences of coefficients for scalar equations of convolution type 
(Section 2), for Eqs (1.1) (Section 3) and for the non-linear case (Sections 4 and 5). The functionals 
used in the paper are obtained by using a previously proposed procedure to construct them [6]. 
As an application, conditions are derived for the solutions of the perturbed equations to be bounded 
(Section 5). 

We recall [7] that a sequence a i is said to be positive semi-definite if, for any n and any finite sequence 
of numbers x0, • • •, xn 
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~, ai+jxix I >I 0 
i,j=O 

The definitions of positive and negative definite sequences are analogous. 
Monotonieity of a sequence a i means that the differences between its terms have alternating signs. 

In particular, a sequence a i is said to be completely monotonic if, for all i, j = 0, 1 . . . .  

(-1)JAJai~O, Aa i=ai+l -a  i, A°ai=ai  

An example of sequences of this type is the sequence of moments of a random variable [2]. 

2. S C A L A R  E Q U A T I O N S  OF C O N V O L U T I O N  T Y P E  

We will establish the conditions for Eqs (1.2) to be stable. Consider the following functional V, putting 
a _ l = 2  

M 

V= ~, ai+/_lxn_ix,_ i (2.1) 
i,j=O 

Calculating the first difference AV = G - V, we obtain 

n + l  

G= ~, ai+i_lX.+l_iX.+l_ 1 (2.2) 
i,j=O 

Transform G as follows: 

n+l n+ln+l 2 + 
G= ~ aj_lXn+lXn+l_j+ ~, ~ ai+j_lXn+l_iXn+l_j=a_lXn+l 

j=O i= l j=O 

n n 
+2xn+t ~ ajxn-j+ ~, ai+/+lx,-ix,-/ 

jffiO i,j=O 

Note, moreover, that by Eqs (1.2) 

n 

2 ~.aiXn_i (2.3) Xn+ 1 =--Xn+ 1 
i = 0  

Equations (2.1)-(2.3) mean that 
tl 

AV = ~. (ai+/+ 1 - ai+j_ i)xn_ix"_ j (2.4) 
i,j=O 

Now, depending on our assumptions concerning quadratic forms (2.1) and (2.4), we can formulate 
various stability criteria. For example, by previously known results [3], if the sequence ai-1 is positive 
definite and (ai+l-ai-1) is negative definite, system (1.2) is asymptotically stable; however [3], this 
conclusion also holds under  the following weaker assumptions concerning a i. 

Theorem 2.1. Suppose that for certain positive constants cl, c2 and a_/= 2 the functionals (2.1) and 
(2.4) satisfy the estimates 

>~ 2 _c2x2 (2.5) V ~ c t x  n, AV<~ 

Then system (1.2) is asymptotically stable. But if V I> cvr2n and the sequence (ai+l--a_l) is negative definite, 
then system (1.2) is stable. 

Example 2.1. Consider Eq. (1.2) with constant coefficients a i =-- b, i >1 0 

n 

xn+l =-b ~,xn_i, n~O (2.6) 
i = 0  

The series of the coefficients of Eq. (2.6) is divergent, that is, it is impossible to draw any conclusions as to stability 
on the basis of previous results that assume it to be convergent. At the same time, by Sylvester's criterion, the 
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sequence a_l = 2, ai =- b, i >~ 0 is positive semi-definite if 0 ~< b < 2. In addition, the form (2.1) in this case is V 
= (2 - b)x 2 + b(xo + . . .  + x,) 2, and by (2.6) we may conclude for the first difference that AV = - (2  - b)x 2. Thus, 
by Theorem 2.1, system (2.6) is asymptotically stable for 0 <~ b < 2. This asymptotic stability condition is not only 
sufficient but also necessary. Indeed, if we introduce a new independent variable y,  = b(xo + . . .  + x,_l), then Eq. 
(2.6) proves to be equivalent to a system of two equations xn+l = -bx,-yn, y,+~ = bx, + y, .  By the Schur--Cohn 
criterion, this system is asymptotically stable if and only if 0 ~< b < 2. 

Now let us pu t  Xkn = ~%~cj and turn to o ther  stability condit ions for  system (1.2), ob ta ined  by using 
the funct ional  

n 
V = G I  +G2 +(2  a 2. 2 _ a  n i ) X  2 

- _l)Xn, GI =an+lX~n, G2 =-]~(an+l_ i  _ 
i=0 

(2.7) 

X 2 AV = AG l + AG 2 + (2 - a_ I)Ax 2 AG~ = an+ 2 0.+1 - GI, 

n+l 
AG 2 _ ~. (an+2_ i 2 = -an+l_i)Xin+l - G  2 

i=o 

Afte r  t ransforming,  we obtain  

2 
AGI = (a.+2 - an+ I )Xdn+ 1 + an+lXn+l (Xn+l + 2X0,) 

n+l 
AG2 G3 E(an+2-i  2an+l-i 2 = -- _ + an_ i )Xin+l 

i=0 

n n+i 2 
G 3 = ~'.(an+l_ i - a,_i)Xi2n - Y~(a,+l_ i - an_i)X2in+l = G 4 - Xn+l(a 0 - a_ 1 ) 

i=0 i=0 
n 

G4 = _ X n + l  ~ ( a n + l _ i  _an_ i ) ( xn+  1 + 2Xin )  2 = --Xn+l(an+ 1 - a o ) -  
i=o 

n 

-2an+lXn+lXon + 2Xn+ 1 ~',an_ix i 
i=0 

Rela t ions  (2.8), (2.9) and (2.4) m e a n  that  

n+l 
2 2 

AV = (an+ 2 - an+ 1 )Xon+l ~'~ (an+2_ i - - 2an+l_ i + an_ i )Xin+l - (2 - a_ 1 )x 2 
i=o 

We have thus p roved  the following theorem.  

(2.8) 

(2.9) 

Theorem 2.2. Suppose  that  for  some  ~-1 E [0; 2) and all i />  0 

ai>~O , a i + l - a i  <~O, a i + l - 2 a i + a i _ l ~ O ;  i>~O (2.10) 

T h e n  system (1.2) is asymptot ical ly stable. 

Note that application of Theorem 2.2 to the test example 2.1 leads to the condition 0 ~< b < 2 for the asymptotic 
stability of system (1.2), previously established with the help of Theorem 2.1. 

3. E Q U A T I O N S  W I T H  V A R I A B L E  C O E F F I C I E N T S  

We now presen t  ana logues  of  T h e o r e m s  2 ,1  and 2.2 for  equat ions  of  type (1.1). Set an, n+l = 2 for 
all n / >  -1  and cont inue  an,j into the domain  n / >  0, i ~< -1 .  Consider  the functional  

V--- ~. an_l,n_i_jXn_iXn_ j (3 .1 )  
i,j=0 

Afte r  calculat ions analogous  to those in Section 2, we obtain 

A V =  ~ [an ,n - l - i - j -an - l , n - i - j ]Xn- iXn- j  (3.2) 
i,j=O 
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Thus, as in Theorem 2.1, we conclude that the following theorem holds. 

Theorem 3.1. If forms (3.1) and (3.2) satisfy estimates (2.5), then system (1.1) is asymptotically stable. 
Note that if an, i = a,,.-i forms (3.1) and (3.2) transform into (2.1) and (2.4), respectively. 
We introduce certain sequences an-x, n and an,_l, n >~ O, assuming that 

sup an_l. n < 2, a.,_t I> O, an+l,_ 1 - an,_ I <~ 0 (3.3) 
n~O 

Consider the functional 

= X2  n 
V a,,_l o,, - Y.(a,,,i-I - a , , , i ) X ~  +(2-an-l , , )x~ (3.4) 

i -0  

Calculations analogous to those in Section 2 give 

n+l 
X2 2 

A V  = - ( 2  - an_l, n ) x  2 + (an+l ,_  1 - an, ,  I ) 0n+l - ~ (an+l,i-I - an+l,i - an,i-I + an,i)Xin+l 
i=0 

We have thus proved the following theorem. 

Theorem 3.2. System (1.1) is asymptotically stable if inequalities (3.3) hold and in addition the following 
estimates hold for 0 ~< i ~< n + 1, 0 ~< j ~< n, n ~> 0 

an, j_  1 -- an, j <~ O, an+l,i_ 1 -- an+l, i -- an,i_ I + an, i :~ 0 (3.5) 

Note that if a,,. i = an-i stability conditions (3.3) and (3.5) transform into conditions (2.10) of 
Theorem 2.2. 

4. NON-LINEAR SYSTEMS 

We will now establish certain stability conditions for the trivial solution of the scalar equation 

n 

xn+ 1 = - ~ a n _ i g ( x i ) ,  n >I 0 
i=o 

where the function g(x)  is such that 

(4.1) 

Consider the functional 

g(O) = O, xg ( x )  > 0, x ;~ 0, I g(x )  I ~< I xl (4.2) 

V = GI  + G 2  (4.3) 
n 

G I = 2 x n g ( x  n)  - a_ lg  2 ( x  n),  G2 = '~  ai+j_ I g ( X n _ i ) g ( x n _ j )  
i,j=O 

where the positive constant a-x is such that for all x 

2 - a _  ! g ( x )  >I 0 (4.4) 
x 

After calculations, we have 

n 

A V = - g (  x n ) (2x  n - a_lg(x  n) ) - ]~ ( ai+ j_ t - ai+ )+ l )g (x ._  i )g( x . _ j  ) 
i.j=O 

We have thus proved the following corollary. 

(4.5) 

Corollary 4.1. If conditions (4.2) are satisfied, a constant a-1 > 0 satisfying (4.4) exists, and inequalities 
(2.5) hold for the functionals Vand AVdefined by (4.3) and (4.5), then the trivial solution of Eq. (4.1) 
is asymptotically stable. 

We introduce the notation 
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R 

j = t  

and consider the functional 

V = G I + G 2 4"(7 3 
N 

F 2 Gt - -  £ (an+ l - i  - a n - i )  is, 
i =0  

G2 =an+iF~, (73 = ( 2 - a _ t ) x . s ( x n )  

Through reductions similar to those performed in Section 2, we have 

A V  = - ( 2  - a_ 1 )xng(x  n) - a_lg(Xn+ 1 )(Xn+ 1 - g(x,+ 1 )) - 
n+l 

2 2 
-(as+l - an+2)r&+l - £(an+2-i  - 2an+l-i + an-i)F/~+l 

iffi0 

We have thus proved the following corollary. 

Corollary 4.2. Suppose estimates (4.2) and (2.10) hold and a_  1 ~ [0; 2). Then the trivial solution of 
Eq. (4.1) is asymptotically stable. 

Examp/e 4.1. Suppose Eq. (4.1) has the form 

xn+! •--b(sin Xl + ... ÷ sinx n) 

By either o f  Corollaries (4.1) or (4.2), the trivial solution of  this equation is asymptotically stable if 0 <~ b < 2. 

5. N O N - L I N E A R  U N S T E A D Y  S Y S T E M S  

Proceeding in the same way, we can derive the conditions for the stability of  non-linear systems 

B 

Xs+ ! = - y.an, ig(x  i)  
iffiO 

We extend the definition ofan, i to i = n + 1 and i ~< -1, n ~ 0. Consider the functional 

V = Gi +G2 

GI = g(x,,)(2x. - an-l.,,g(x,,)), 

After calculations, we obtain 

n 

II 
G= = E a,,_~.,,_i_j&(x,,_~)S(x,,_j) 

i.j=O 

6 ! ;  = Y.[a,,,,,_~_~_.~ - an_t.s_~-j l g ( x , - D g (  x , - j  ) - G~ 
i, jffiO 

(5.1) 

Corollary 5.1. If relations (4.2) hold and the functionals V and AV satisfy estimates (2.5), then the 
trivial solution of  Eq. (5.1) is asymptotically stable. 

Consider the functional 

Thus 

V =  GI + G2 + G3 

G 1 - an ,_ l r{~ 2 , 
N 

G2 ffi --  ~" ( a n . i - I  - -  a n , i ) r ~ ,  G 3 --  ( 2  - a s _  i.n ) x n g ( x n  ) 
iffi0 

2 + AV = (an+l._ l - an,-! )G~n+! G4 - G3 - an.,+lg(xs+l)(xn+l -- g(xs+l))  

s+ l  

G 4  ---- - -  ~ ( a n + l . i - !  - -  an+Li  - an . i - I  + an,i)F~+i 
i=0 
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This proves  the following corollary.  

Corollary 5.2. Le t  the funct ion g(x) satisfy condi t ions (4.2) and suppose  inequali t ies  (3.3) and (3.5) 
are true.  T h e n  the trivial solut ion of  Eq. (5.1) is asymptot ical ly  stable. 

6. T H E  B O U N D E D N E S S  O F  T H E  S O L U T I O N S  
O F  P E R T U R B E D  E Q U A T I O N S  

The stability conditions established above also enable us to establish certain conditions for the solutions of Volterra 
equations to be bounded, with various assumptions as to the nature of the perturbations. 

We will first present some of these conditions for a system of type 

n 

Xn+  1 = - -  ~'~(an_iX i +bn, i (x i ) ) ;  n >~ n O, Xno = x  0 (6.1) 
i=n 0 

where ai are given constants, bn~ are given functions and no ~ N, with N a given index set. 
We recall that system (6.1) is said to be: (1) bounded, if for any number r > 0 a number a(n0, r) exists such that 

[xn I <~ a(no, r) for all n />  n o and x 0 such that Ix0 [ ~< r; (2) uniformly bounded relative to an initial value no e N, 
if a(no, r) ~-- a(r). 

Theorem 6.1. Suppose the assumptions of either of Theorems 2.1 or 2.2 are satisfied and the functions bn~(x ) 
satisfy inequalities bn~(X ) [ ~< Yn~ [ x [, where the constants'yn~ ~ 0 are such that 

~,Yrj <** (6.2) 
j=n 0 r=j 

Then system (6.1) is bounded. 

Proof. We express the solution of problem (6.1) in the form 

n - I  i 

xn = R(n-no)x  0 + Y~ R ( n - i - 1 )  Y~bid(xj); n> no (6.3) 
i=n 0 l=nO 

where R(n) is a fundamental solution of Eq. (1.2), that is, a solution of Eq. (2.1) for n > 0 with initial condition 
R(0) = 1. By the assumptions of  Theorem 6.1, the function R(n) is bounded, that is, JR(n) [ ~< C for all n i> 0 and 
some C > 0. Hence, and from (6.2) and (6.3), it follows that 

n - I  

Ixnl<~ Ix0 I+.]  ~ Ixyl i,j 
l=n0 

Applying the discrete version of the Gronwall-Beilman Lemma to the last inequality, we obtain 

r .-1.-J q 
Ix, I<~CIxolexl~C ~, Y4,i j  I (6.4) 

L j=no i=j ' j 

In view of condition (6.2), it now follows from (6.4) that system (6.1) is bounded. 
We will now find the condition for the solutions of the equations 

n 

.1;.+ I = - -  ]~an_iXi +bn; n >~ no, Xno = x  0 (6.5) 
i=n 0 

tO be bounded, where the perturbations bn are square summable. 

if 
Theorem 6.2. Suppose conditions (2.5) or the assumptions of Theorem 2.2 hold. Then system (6.5) is bounded 

~.b~ < ** (6.6) 
R~n 0 

Proof. Suppose conditions (2.5) are satisfied. Then, summing both sides of the second inequality of (2.5) over 
n and using the fact that V is non-negative, we conclude that any solution of Eq. (1.2) is square summable. In 
particular 
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R 2 (i) < ~0 
i=o 

It  now follows from (6.6) and (6.7) and the representation 

n - I  

x n = R ( n - n o ) x  0 + ~ R ( n - i - 1 ) b  i 
i=n 0 

for the solutions of problem (6.5) that system (6.5) is bounded,  since 

" . o  .0 11/2 

IXnI<~CIXoI+ I Y~ R2(i) Y.b~] 
L i=o j=n 0 
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(6.7) 
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